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Abstract—Event data are often dirty owing to various record-
ing conventions or simply system errors. These errors may cause
many serious damages to real applications, such as inaccurate
provenance answers, poor profiling results or concealing interest-
ing patterns from event data. Cleaning dirty event data is strongly
demanded. While existing event data cleaning techniques view
event logs as sequences, structural information do exist among
events. We argue that such structural information enhances not
only the accuracy of repairing inconsistent events but also the
computation efficiency. It is notable that both the structure and
the names (labeling) of events could be inconsistent. In real ap-
plications, while unsound structure is not repaired automatically
(which needs manual effort from business actors to handle the
structure error), it is highly desirable to repair the inconsistent
event names introduced by recording mistakes. In this paper,
we propose a graph repair approach for 1) detecting unsound
structure, and 2) repairing inconsistent event name.

I. INTRODUCTION

Event data, logging the execution of business processes or
workflows, are often varying in precision, duration and rele-
vance [24]. In particular, execution of a business process may
be distributed in multiple companies or divisions, with various
event recording conventions or even erroneous executions. The
corresponding event data scattered over a heterogeneous en-
vironment involve inconsistencies and errors [26]. According
to our survey on a real dataset (in Section V-A), about 82%
execution traces of processes are dirty.

The dirty event data lead to wild data provenance answers
[28], mislead the aggregation profiling in process data ware-
housing [9], or obstruct finding interesting process patterns
[17]. Indeed, the event data quality is essential in process
mining, and known as the first challenge in the Process Mining
Manifesto by the IEEE Task Force on Process Mining [30].

Existing approaches [11], [32] on cleaning event data treat
event logs as unstructured sequences. It is worth noting that
structural information do exist among events. A very common
example is the task passing relationships, e.g., the manager
assigns the work to another staff for succeeding operations
(see details below). We argue that such structural information
are not only essential to obtaining more precise event repairs
but also useful in improving the computation efficiency.

Example 1. We illustrate a real example of part design
process in a major bus manufacturer1. Figure 1(a) illustrates

1It involves about 70 process specifications for product lifecycle manage-
ment, which are manipulated by more than 100 outsourcing companies.

Event Name Operator Successor
t1 submit M. Liu F. Kang
t2 do revise F. Kang J. Zhe & O. Chu
t3 proof J. Zhe X. Feng
t4 — O. Chu X. Feng
t5 evaluate X. Feng System2
t6 archive System2 —

(a) An execution trace with 6 events

(b) Representing execution as causal net

(c) Specification for part design process

Fig. 1: Example of structured event data

6 steps (events t1 to t6) of accomplishing a part design,
a.k.a., an execution trace. Each event includes a Name of
being processed task, the Operator executing the task, and the
Successors of the follow-up activities being assigned to. The
links of Successor and Operator between events indicate the
structural information. For example, the Successor of t2 as-
signs the follow-up tasks to J.Zhe and O. Chu (corresponding
to Operators in t3 and t4, respectively). It indicates the links
from t2 to t3 and t4 as illustrated in the graph of Figure 1(a).

The execution of events should follow some process spec-
ifications, as shown in Figure 1(c). Following the standard
of PNML2, we represent specifications by the notation of
Petri Net [29], which is a bipartite directed graph of circles
(places) and rectangles (transitions). Each transition denotes
an event type, e.g., the first event type submit in Figure
1(c). Arcs with dependent relationships between transitions
and places represent the control flow. In particular, flows
attached to transitions have AND semantics, such as AND-
split after transition design. It indicates that both flows after

2Petri Net Markup Language, an XML-based syntax for interchanging
workflows. See an introduction in the reference site http://www.pnml.org/



design should be executed simultaneously. On the other hand,
transition evaluate involving AND-join can be enabled when
both the preceding flows are complete. Moreover, places
specify XOR semantics, e.g., only one of the flows after place
a (XOR-split) will be executed, i.e., either design a new part
or revise an existing one. Consequently, the XOR-join, e.g.,
in place s, indicates the end of XOR choices, that is, the
execution will proceed when one of the flows before place s
is processed. Likewise, either insulation proof or electrician
proof can appear in an execution trace after design.

It is notable that the events in this part design process
are executed by (more than 10) distinct departments and
outsourcing companies. Due to various event recording con-
ventions, a simple proof event name is reported in t3. It
is not clear whether it denotes insulation proof, electrician
proof or proof check. Such ambiguity leads to violations in
conformance checking between execution and specification.

To resolve the inconsistencies, existing repairing techniques
[11] may repair the sequence of events t1, . . . , t6 to either
σ1〈submit, design, insulation proof, check inventory, evaluate, archive〉
σ2〈submit, design, electrician proof, check inventory, evaluate, archive〉
for designing a new part, or σ3〈submit, revise, proof check, merge,
re-evaluate, archive〉 for revising an existing part. Referring to
the structural information, i.e., t2 evoking two parallel events
t3 and t4 (by J. Zhe & O. Chu, respectively), the later one σ3

is an invalid repair where no parallel tasks exist. Instead, the
parallel insulation/electrician proof and check inventory
after design in σ1/σ2 match exactly the structure. With the
structural information, we are able to identify the more likely
repair σ1/σ2 and discard the irrational σ3, which cannot be
distinguished by existing [11] with sequential information
only. (σ1 and σ2 can further be distinguished via the cost
model in Section II-D.)

To capture structural information and conformance to spec-
ification, we also use Petri Net to represent execution traces,
called Causal Net. Figure 1(b) shows the net of the execution
trace in Figure 1(a). It can be simply transformed from the
graph in Figure 1(a) by replacing each edge with a place.
Every place in the net is attached with at most one flow (since
only one of the alternatives can be executed in XOR-split).
The work is accomplished when the flow successfully executes
from start to end exactly following the AND/XOR constraints
on event (type) names specified by the specification.

With structural information, we can directly ignore the
repair candidate σ3, which corresponds to the revise division
without parallel tasks. Repairing efficiency is thus improved
compared with the simple sequence-based approaches.

In general, both the Name labeling and the structural
Operator/Successor may involve dirty information, known as
1) inconsistent labeling and 2) unsound structure. (A structure
is said unsound if it cannot find any labeling conforming to the
specification, see Example 3 for instance). Unsound structure
may be raised owing to ad-hoc re-assignment of operators,
e.g., a task is assigned to a successor J. Zhe but actually ex-
ecuted by the operator O. Chu. Such structural inconsistency

needs business actors to manually handle. Inconsistent labeling
of event names, however, typically occurs owing to mistakenly
recording. Therefore, it is highly desirable to efficiently detect
unsound structure, and repair the inconsistent labeling with
sound structure. According to our survey in a real dataset
(see details in Table I in the experiments), among traces with
detectable inconsistencies3, about 5.42% are raised by unsound
structure, while the others (about 94.58%) are structurally
sound but with inconsistent labeling.

In this paper, we study the two problems of cleaning event
data, 1) detecting unsound structure; or 2) returning a repair of
event names if the structure is sound. That is, while reporting
all detectable inconsistencies, we also attempt to remedy the
majority (94.58%) of inconsistencies as accurate as possible.

Challenges: The major challenges of detecting and repairing
dirty event data originate from coupling of data and logic.

Existing database repairing techniques [19] cannot handle
the complex structural relationships, e.g., t2[Successor]=J.
Zhe & O. Chu denoting the follow-up relationships among
t2, t3, t4. Moreover, the constraints specified by process spec-
ifications are very different from integrity constraints in rela-
tional data. In particular, data dependencies declare relation-
ships in tuple pairs, while process specifications indicate con-
straints on events with flow directions, AND/XOR semantics.

Adapting the existing graph relabeling technique [27], by
treating execution and specification as simple graphs, falls
short in three aspects: 1) the AND/XOR semantics are not
considered; 2) the vertex contraction technique in [27] modi-
fies the structure of execution and thus cannot detect unsound
structure; 3) [27] proposes only approximate algorithms for
large graphs, while event traces are usually small and exact
computation may apply.

Contributions: To the best of our knowledge, this is the
first study on detecting and repairing inconsistencies in event
logs with structural information. Our major contributions in
this paper are summarised as follows.

1) We propose an exact repairing algorithm to either provide
the optimal repair of an execution trace or conclude unsound
structure. Branch and bound algorithms, together with several
efficient pruning techniques, are devised.

2) We develop an efficient PTIME approximation algorithm,
by only one pass through the transitions in the execution trace.
Although it may generate false negative regarding the detection
of unsound structure and may not be able to guarantee the
optimal repairing, the performance studies show that it can
achieve good accuracy while keeping time cost extremely low.

3) We report an extensive experimental evaluation to demon-
strate the performance of proposed methods. Repairing ac-
curacies of our exact approaches (greater than 90% in all
the tests) are significantly higher than the state-of-the-art
sequence-based [11] and graph-based [27] methods. The one
pass approximation also shows a good accuracy higher than
70% in most tests, with relative approximation ratio less than

3Other errors, that are consistent w.r.t. the specification, are unlikely to be
detected without further knowledge and are not in the scope of this study.



1.5. For time performance, the one pass algorithm can achieve
an improvement of at most 3 orders of magnitude compared
with exact approaches, in both real and synthetic data sets.

The rest of the paper is organized as follows. We introduce
preliminaries in Section II. Major results of two detect-
ing/repairing algorithms are presented in Sections III and IV,
respectively. Section V provides an experimental evaluation.
Finally, we discuss related work in Section VI and conclude
the paper in Section VII.

II. PROBLEM STATEMENT

We first formalize syntax and definitions for process speci-
fications and executions. Conformance checking is then intro-
duced, which raises the detecting and repairing problems.

A. Preliminary

For a function f and a set A, let f(A) denote {f(x) | x ∈ A}.

Definition 1. A Petri net is a triplet N = (P ,T ,F ), where i)
P is a finite set of places, ii) T is a finite set of transitions,
P ∩ T = ∅, iii) F ⊆ (P × T ) ∪ (T × P) is a set of directed
arcs, namely flow relation.

A net is a bipartite directed graph, with set F of edges
between nodes in P and T . Each (x, y) ∈ F is a directed arc
from node x to node y. For any x ∈ P∪T , let preF (x) = {y |
(y, x) ∈ F} be the set of all input nodes of x and postF (x) =
{y | (x, y) ∈ F} denote the set of all output nodes of x.

Definition 2. A process specification is a Petri net N (P ,T ,F )
such that i) P contains a source place having preF (start) = ∅,
ii) P contains a sink place having postF (end) = ∅.

Definition 3. A causal net is a Petri net N = (P ,T ,F ) such
that for every p ∈ P , |preF (p)| ≤ 1 and |postF (p)| ≤ 1.

It is easy to see that there will be no XOR-split or XOR-join
in a causal net (according to the maximum in/out degree 1
of places), while AND-split and AND-join are allowed. If we
interpret places as edges connecting two transitions, the net is
indeed a directed acyclic graph of transitions [18].

Definition 4. An execution of a process specification
Ns(Ps,Ts,Fs) is denoted by (Nσ, π), where Nσ(Pσ,Tσ,Fσ)
is a causal net and π is a labeling π : Pσ ∪ Tσ → Ps ∪ Ts
such that π(Pσ) ⊆ Ps, and π(Tσ) ⊆ Ts.

We use y : Y to denote π(y) = Y for short, where y is a
transition/place in Nσ mapping to a transition/place Y in Ns
via π, e.g., π(t1)=submit denoted by t1:submit in Figure 1.

Definition 5. We say an execution (Nσ, π) conforms to a
process specification Ns, denoted by (Nσ, π) � Ns, if and
only if i) π(Pσ) ⊆ Ps and π(Tσ) ⊆ Ts; ii) for any
t ∈ Tσ , π(preFσ (t)) = preFs(π(t)) and π(postFσ (t)) =
postFs(π(t)); iii) for any p ∈ Pσ , preFσ (p) = ∅ implies
π(p) = start and postFσ (p) = ∅ indicates π(p) = end.

That is, there is a bijection between preFσ and preFs for
each transition t in the execution (Nσ, π), and similarly, for
postFσ and postFs .

Event Name Operator Successor Conf

t1 submit A B 1.0
t2 design B C & D 0.6
t3 insulation proof C E 0.7
t4 check inventory D E 0.1
t5 evaluate E F 0.9
t6 archive F — 0.8

(a) Example of an execution trace

(b) Representing execution as causal net

Fig. 2: Example of conformance

B. Execution Trace

In practice, execution is stored as execution trace σ, with
schema (Event, Name, Operator, Successor,. . . ). Each tuple
in σ, a.k.a. an event, denotes a transition in execution ti ∈
Tσ , ordered by execution timestamp, e.g., the i-th executed
event/transition σ(i) = ti.

By the labeling π, each event ti in Tσ is associated with
a name π(ti), which usually corresponds to a type in the
specification Ns, i.e., π(ti) ∈ Ts.

Execution trace also records the net structure of execution.
As there is no XOR-split or XOR-join in the causal net of an
execution, each place pj in preFσ (ti) corresponds to exactly
one transition, say preFσ (pj) = {tj}. Combining tj of all pj
forms preFσ (preFσ (ti)), namely the prerequisite of ti.

Proposition 1. For any σ(j) = tj , σ(i) = ti, j < i in
a trace σ, it always has ti 6∈ preFσ (preFσ (tj)) and tj 6∈
postFσ (postFσ (ti)).

Thus, no ti can appear before its prerequisite tj in a trace σ.
Conformance of execution trace can be checked by recov-

ering its corresponding causal net, i.e., recovering places (and
labeling) between a transition and its prerequisite (as places
are not recorded in execution trace).

Example 2 (Example 1 continued). Consider another exe-
cution trace in Figure 2(a) over the specification in Figure
1(a). We represent the corresponding causal net in Figure
2(b) as follows. For the first t1 without any prerequisite,
we put a place p0 with π(p0) = start as the pre set. The
second σ(2) of t2 has prerequisite preFσ (preFσ (t2)) = {t1}.
We recover the labeling of the place p1 between t2 and
its prerequisite t1 to the place between π(t2) and π(t1) in
the specification, i.e., π(p1) = a. Similarly, considering the
prerequisites of t5, preFσ (preFσ (t5)) = {t3, t4}, we obtain
π(p3) = c, π(p5) = e. For the last t6, which is not prerequisite
of any others, a place p7 : end is appended as postFσ (t6).

Referring to conformance definition, for any transition, say
t1 for instance, we have π(preFσ (t1)) = π(p0) = {start}
= preFs(submit) = preFs(π(t1)) and π(postFσ (t2)) =
π({p2, p4}) = {b,d}= postFs(design) = postFs(π(t2)).

We consider two types of inconsistencies, unsound structure



Event Name Operator Successor
t1 submit A B
t2 design B C
t3 archive C —

(a) Example of an execution trace

(b) Representing execution as causal net

Fig. 3: Example of unsound structure

and inconsistent labeling, which injure the conformance.

C. Unsound Structure Detection Problem

We say that a causal net Nσ is unsound w.r.t. the speci-
fication Ns, if there does not exist any labeling π such that
(Nσ, π) forms an execution conforming to Ns.

Problem 1. Given an execution (Nσ, π) over the specification
Ns, the unsound structure detection problem is to determine
whether there exists a labeling π′ such that (Nσ, π

′) � Ns.

We say that structure is sound if there exists at least one
labeling π′ to make the conformance.

Example 3 (Example 1 continued). Consider another execu-
tion trace in Figure 3 over the specification in Figure 1(a).
As shown in the recovered causal net, the second t2 involves
inconsistency that π(postFσ (t2)) = π(p2) = {b} 6= {b,d} =
postFs(design) = postFs(π(t2)).

To accomplish the work specified in Figure 1(a), at least two
transitions should be processed which take t2 as prerequisites.
However, only one transition t3 in the causal net in Figure 3
has prerequisite t2. It is impossible to find any labeling π′ that
can make conformance to the specification.

While we can detect unsound structure, as mentioned,
handling unsound structure is not the focus of this study.

D. Inconsistent Labelling Repair Problem

For an execution trace with sound structure, we can repair
the inconsistent labeling of events. Repairing the execution can
be viewed as the relabeling of transitions (and places) from
Nσ to the specification Ns. The new labeling, say π′, should
meet the conformance requirement.

Cost Model: As discussed in the introduction, along the
same line of database repairing [7], a typical principle is to
find a repair that minimally differs from the original data.

Let (Nσ, π
′) be a repaired execution of the original (Nσ, π)

by changing the labeling function from π to π′ such that
(Nσ, π

′) � Ns. The event name repairing cost is given by

∆(π, π′) =
∑
t∈Tσ δ(π(t), π′(t)), (1)

where π′(t) is the new (type) name of the transition (event)
t in the repaired (Nσ, π

′), and δ(π(t), π′(t)) denotes the cost
of replacing π(t) by π′(t).

As shown in Figure 2(a), additional information may also
be attached in the table of execution trace, e.g., the confidence
of an event being correctly recorded by the executor. The

Confidence field is optional and analogous to the confidence
of each tuple in database repairing [7]. Intuitively, a higher
confidence conf(t) indicate a larger cost of t being repaired.

Frequency is an observation of “user behaviors” and may
help in repairing. For instance, in Figure 1 (a), if insulation
proof appears much more frequently than electrician proof
in the database of all execution traces, we may repair t2
by insulation proof. The cost of repairing a high frequency
freq(π(t)) to a low frequency freq(π′(t)) is large.

Thereby, the cost δ can be defined as, but not limited to,

δ(π(t), π′(t)) = conf(t) · dis(π(t), π′(t)) · freq(π(t))

freq(π′(t))
(2)

where conf(t) is the confidence associated to transition t
as the example illustrated in Figure 2(a), dis(π(t), π′(t))
denotes the metric distance between two names π(t) and
π′(t), e.g., edit distance, and freq(π(t)) and freq(π′(t)) are
the frequencies of π(t) and π′(t), respectively, appearing in
different execution traces in the event database.

Problem 2. Given an execution (Nσ, π) over the specification
Ns, the inconsistent labeling repairing problem is to find a
relabeling π′ with the minimum repairing cost ∆(π, π′) such
that (Nσ, π

′) � Ns, if it exists.

III. EXACT ALGORITHM

Both detecting and repairing problems can be solved by
an algorithm of attempting to find the minimum repair. If no
valid repair is found, the input execution trace is detected as
unsound structure. In this section, a practical branch and bound
algorithm is developed for computing exact solutions. We also
propose advanced bounding functions and pruning techniques
to further improve the efficiency.

A. Branch and Bound

We first briefly describe the idea of computing repairs.
For each transition in a given execution trace, there may
be multiple candidates for repairing. In order to generate
the optimal repair, we should theoretically consider all the
repairing alternatives, each of which leads to a branch of
generating possible repairs. The repairing must roll back to
attempt the other branches in order to find the minimum cost
one. Intuitively, by trying all the possible branches, we can
find the exact solution.

Overview: Starting from the first transition in the execution
trace σ, in each step, we will consider all the possible repairs
for a transition tk, each of which leads to a repairing branch.

For any node in the branching graph, let σk denote the
first k transitions in σ that have been repaired by π′. As we
will present soon, a lower bound of least cost for repairing
the remaining transitions in σ \ σk can be computed, to
form a valid repair. That is, we can compute a bound of
repairing cost LB(σk, π

′) for all the possible repairs generated
in the branches w.r.t σk. A simple bounding function can be
LB(σk, π

′) = ∆(π, π′), i.e., the cost that has already been
paid in the repairing π′ for the first k transitions in the trace.



Fig. 4: Idea of branch and bound

It is clear that any repair over the entire trace generated in the
branch of σk must have cost higher than LB(σk, π

′).
Consequently, if we have found a valid repair in some other

branches whose repairing cost is less than the lower bound
LB(σk, π

′), all the branches on σk can be safely pruned.

Example 4 (Example 1 continued). Consider the execution
trace in Figure 1. Each node in Figure 4 denotes a state of
repairing the trace, i.e., π′(σk). Initially, the first transition
does not need to change, having π(σ1) = [submit] in node
1©. For the next t2, there are two possible repairs which lead

to two branches π(σ2) = [submit, design] in node 2© or
[submit, revise] in node 3©. The branching continues in the
remaining transitions of σ until it forms a valid repair (e.g.,
node 4© for all 6 transitions in σ) or no further repairing can
be applied such as node 3©. Suppose that the repairing cost
∆(π, π′) of node 4© is 30 (computed by string edit distance on
event names). Then, all the branches on node 5© with bound
31 can be safely pruned.

Algorithm: Algorithm 1 presents the procedure of branch
and bound repairing. We maintain a priority queue Q , where
each element (σk, π

′) denotes a node or state of branching.
As shown in Line 3, each step fetches an element from Q ,
say σk−1 together with its repair π′, which has the minimum
LB(σk−1, π

′). If the current π′ has already formed a valid
repair, in Line 6, we directly return it as the result. As the
remaining nodes in Q must have a lower bound no less than
the current solution, the result is the first valid solution with
the minimum cost.

Otherwise, we keep on branching to the next transition tk.
According to Proposition 1, it ensures that all the prerequisites
of tk are in σk−1.

Lemma 2. For the current branching for each tk, it always
satisfies preFσ (preFσ (tk)) ⊆ σk−1.

That is, the transitions in σk−1 has already been repaired and
will not be modified in the current branching. As illustrated in
Figure 5, the prerequisites of tk determine the possible assign-
ments of places in preFσ (tk), i.e., Lines 10-12 in Algorithm 1.
The determination of π′(pi) for each pi ∈ preFσ (tk) will be
presented below. Consequently, for each labeling π′ on places
in preFσ (tk), we can enumerate the corresponding possible
repairs (Line 14) of tk for branching (Line 18).

Finally, the while iteration terminates when there is no
element left in Q . The returned results can be either the
optimal repair or the identification of unsound structure. The
correctness of conformance of the returned repair is guaranteed
by Line 5 in Algorithm 1.

Algorithm 1 EXACTBB(Nσ, π,Ns)
Input: An execution (Nσ, π) and a specification Ns
Output: An optimal repair π′ with the minimum repairing cost such

that (Nσ, π
′) � Ns

1: Q := {(∅, π)}
2: while Q 6= ∅ do
3: (σk−1, π

′) := arg min(σi,π′)∈Q LB(σi, π
′)

4: Q := Q \ {(σk−1, π
′)}

5: if (Nσ, π
′) � Ns then

6: return π′

7: else
8: tk := σ(k) the k-th transition in the execution trace

{branch tk to generate π′(tk)}
9: σk := σk−1 ∪ {tk}

10: for each pi ∈ preFσ (tk) do
11: Pci := all valid labeling π′(pi) of pi.
12: Λ := Pc1 × · · · × Pc|preFσ (tk)|
13: for each labeling π′ in Λ on places preFσ (tk) do
14: Tc := ∩pi∈preFσ (tk)postFs(π

′(pi))
15: for each X ∈ Tc do
16: if π′(preFσ (tk)) = preFs(X) then
17: π′(tk) := X
18: Q := Q ∪ {(σk, π′)}
19: return unsound structure

B. Generating Branches

Recall that each branch w.r.t. the current transition tk
corresponds to a possible repairing π′(tk). As illustrated in
Figure 5, to determine π′(tk), we need to first identify the
labeling on the places in the pre set of tk.

Let us consider any pi ∈ preFσ (tk). Referring to the
definition of causal net, we have a unique transition, say ti, in
the pre set of pi, denoted as preFσ (pi) = {ti}. This ti must
belong to σk−1 according to Lemma 2, where the repair π′(ti)
has been given. As illustrated in Line 11 in Algorithm 1, we
can find a set Pci of all valid labeling π′(pi) of pi that are
consistent with π′(ti). There are several scenarios to consider
for determining Pci :

Case 1. If postFσ (postFσ (ti)) 6⊆ σk, then we have
Pci := postFs(π

′(ti)). That is, there exists at least one
transition, whose prerequisite is ti, but not belonging to σk,
e.g., tk+1 following tk−1 in Figure 5 that has not been repaired
in (σk−1, π

′). We can assign any π′(pi) in postFs(π
′(ti))

without introducing inconsistencies to ti in the current stage.
Case 2.1. If postFσ (postFσ (ti)) ⊆ σk, and

π′(postFσ (ti) \ {pi}) = postFs(π
′(ti)),

then we have Pci := postFs(π
′(ti)). In this (and following

2.x) case, we have all the transitions, whose prerequisite is
ti, belonging to σk. In other words, all the transitions, e.g.,
postFσ (postFσ (tk−r)) of tk−r in Figure 5, are repaired in
(σk−1, π

′) except tk. Moreover, the condition π′(postFσ (ti)\
{pi}) = postFs(π

′(ti)) ensures the conformance on ti
if we ignore pi. Consequently, any assignment π′(pi) in
postFs(π

′(ti)) will not introduce inconsistencies to ti.
Case 2.2. If postFσ (postFσ (ti)) ⊆ σk, and

|π′(postFσ (ti) \ {pi})| = |postFs(π
′(ti))| − 1,



Fig. 5: Generating a branch

then we have Pci := postFs(π
′(ti)) \ π′(postFσ (ti) \ {pi}).

This case differs from Case 2.1 in the variance between
π′(postFσ (ti)\{pi}) and postFs(π

′(ti)). It states that there is
only one choice of π′(pi), i.e., postFs(π

′(ti))\π′(postFσ (ti)\
{pi}), in order to make the conformance on ti.

Case 2.3. If postFσ (preFσ (pi)) ⊆ σk, and

|postFs(π
′(ti))| − |π′(postFσ (ti) \ {pi})| > 1,

then we have Pci := ∅. In this case, the difference between
π′(postFσ (ti) \ {pi}) and postFs(π

′(ti)) is at least 2. It
is impossible to achieve the conformance on ti by simply
repairing one place pi. We ignore this case by setting Pci := ∅.

Thus far, we have presented the assignment of each place
pi in preFσ (tk). Considering all the r = |preFσ (tk)| places,
we can enumerate all the labeling π′ on places preFσ (tk),
i.e., Λ := Pc1 × · · · × Pc|preFσ (tk)| in Line 12 in Algorithm 1.
For each labeling π′ in Λ, there is a set of candidate repairs
for π′(tk), denoted by Tc := ∩pi∈preFσ (tk)postFs(π

′(pi)) in
Line 14. Finally, any π′(tk) in Tc, which satisfies the confor-
mance requirement π′(preFσ (tk)) = preFs(π

′(tk)), generates
a possible branch (σk, π

′), and is added into Q in Line 18.

Example 5 (Example 1 continued). Let t5 in Figure 1 be
the currently considered k-th transition in Line 8 of Al-
gorithm 1. Line 11 computes all valid labeling (w.r.t. pre-
requisites of t5) for the places in preFσ (t4), by consider-
ing the aforesaid possible cases, i.e., {c} for p3 referring
to π′(t3) = insulation proof and {e} for p5 referring to
π′(t4) = check inventory. The labeling of places p3, p5 sug-
gests possible candidates for branching t5, in Line 14, having
Tc = postFs(c) ∩ postFs(e) = {evaluate}. By considering
the next branching step iteratively, on t6, since there is no
violation left, the program returns the result in Line 6.

Algorithm Analysis: Note that pre and post sets of a
transition lead to parallel flows. In most processes, the number
of parallel flows of a transition is often small and can be
regarded as a constant4 [25]. Let b and d be the maximum
sizes of the pre/post set of any node in the specification and
execution, respectively. We have O(bd) possible labelings in Λ,
each of which corresponds to b repairing candidates in Tc, i.e.,
total O(bd+1) repairs for tk. Consider the branches of possible
combinations on n transitions. The worst case complexity of
Algorithm 1 is O(b(d+1)n), exponential to n.

4Although a process may theoretically consist of a large number of parallel
flows, in practice, techniques are often applied to keep the process as simple
as possible, such as minimize the routing paths per element [25]. According to
our survey, the maximum number of parallel flow is 4 in the dataset from SAP
Reference Models [10], which includes 69 typical workflow specifications.

C. Pruning Invalid Branches

It is worth noting that not all the branches can eventually
generate a valid repair (e.g., node 3© in Figure 4). We call the
branches that cannot form a valid repair invalid branches. The
earlier the algorithm could identify invalid branches, the better
the repairing performance will be. However, the aforesaid
repairing method will not terminate branching until the last
step, i.e., no further repairing can perform on a transition.

The intuition of early termination for invalid branches
comes from the scenario of unsound structure. If the maximum
length path from the current transition tk to the end place in
the causal net is shorter than the minimum length path from
π(tk) to end in the specification, modifying transitions after
tk will form an invalid repair.

Pruning of invalid branches can be deployed before Line
18 in Algorithm 1. Specifically, in the preprocessing, for each
transition tj in the specification, we can find a shortest path
from tj to end, denoted by SPs(tj). Moreover, since any
causal net can be viewed as a directed acyclic graph, we
can find the longest path from any transition ti to end, say
LPσ(ti). It can be computed by running a shortest-path finding
algorithm with negative weights.

Proposition 3. A branch (σk, π
′) with LPσ(tk) < SPs(π

′(tk))
is an invalid branch that cannot form any valid repair with
the current labeling π′ on σk.

According to the proposition, for any tk in Line 18 in
Algorithm 1, if LPσ(tk) < SPs(π

′(tk)), we will not add this
(σk, π

′) to Q . That is, (σk, π
′) is pruned as an invalid branch.

Example 6 (Example 3 continued). In Figure 3, let t1 be
the current transition with π′(t1) = submit. The maximum
length from t1 to the end place p3 is 2 (2 transitions), while
the specification shown in Figure 1(a) needs to process at least
5 transitions (with a minimum length 5) to go to the end place
from design. Consequently, we can directly conclude that the
branch with respect to π′(t1) = submit is invalid, i.e., unable
to find a repair π′ for the causal net with π′(t1) = submit.

D. Advanced Bounding Function

The lower bound of repairing cost LB(σi, π
′) is essential in

pruning branches. Before introducing the advanced bounding
function LB, we first investigate the lower bound of cost
for repairing an execution. Let LC(Nσ, π) denote the least
cost of repairing (Nσ, π). As mentioned, a naive bound is
LC(Nσ, π) = 0, as any repair π′ must have ∆(π, π′) ≥ 0.
Indeed, as discussed below, such a naive bound will yield a
bounding function LB with weaker pruning power.

To obtain a reasonable bound of least cost for repairing
(Nσ, π), we build a conflict graph G with transitions in Tσ
as vertexes. For any place p ∈ Pσ , let preFσ (p) = {ti} and
postFσ (p) = {tj}. If postFsπ(ti) ∩ preFsπ(tj) = ∅, i.e., at
least one of the transitions ti, tj needs to be repaired, we put a
conflict edge (ti, tj) in G . Each vertex ti is associated with a
weight, w(ti) = minx∈Ts δ(π(ti), x ), i.e., the minimum cost
on all possible repairs of ti.



To eliminate inconsistencies, at least one transition of each
edge in G should be repaired. The minimum weighted vertex
cover of G with total weight V C∗(G) can be interpreted
as a lower bound of least cost LC(Nσ, π), i.e., V C∗(G) ≤
∆(π, π′) for any repair π′. As computing the exact minimum
vertex cover is unlikely to be efficient, we relax the bound
as follows. Consider a set E = ∅ initially. We repeatedly
add an edge say (ti, tj) of G into E , and remove ti, tj
and all the edges incident on ti or tj , until there is no
edge left in G . Consequently, no two edges in E share
the same vertex. As each edge should be covered by at
least one vertex from the minimum vertex cover, we have∑

(ti,tj)∈E min{w(ti), w(tj)} ≤ V C∗(G). Considering the
relationship between vertex cover and repairing, it follows:

Lemma 4. For any valid repair π′, we have∑
(ti,tj)∈E min{w(ti), w(tj)} ≤ V C∗(G) ≤ ∆(π, π′).

Hence, we define the lower bound of the least cost for
repairing by LC(Nσ, π) =

∑
(ti,tj)∈E min{w(ti), w(tj)}.

Note that each (σi, π
′) divides the transitions into two parts,

σi and its complement σ \ σi, denoted as σ̄i. We consider
Nσ̄i(Pσ̄i ,Tσ̄i ,Fσ̄i) as a projection or partition of the net
on transitions Tσ̄i ⊆ Tσ corresponding to the remaining
execution trace σ̄i. As π′ only specifies the repairing of the
current σi, transitions in σ̄i have not been reassigned by π′ yet.

Lemma 5. We have π′(t) = π(t),∀t ∈ σ \ σi.

Finally, the lower bound is defined as

LB(σi, π
′) = ∆(π, π′) + LC(Nσ̄i , π),

which consists of the repairing cost ∆(π, π′) that has been
made on σi, and the least cost of repairing the remain-
ing σ̄i. The larger the lower bound, the higher the power
will be in pruning branches. We call this LB(σi, π

′) with
LC(Nσ, π) =

∑
(ti,tj)∈E min{w(ti), w(tj)} the advanced

bounding function. It is not surprising that the aforesaid simple
bounding function with the naive bound LC(Nσ̄i , π) = 0
shows weaker pruning power.

Example 7 (Example 1 continued). Let σ1 with one transition
t1 in Figure 1 be the currently repaired transitions. Since no
transition is changed so far, we have ∆(π, π′) = 0. For the
remaining transitions t2t3t4t5t6, i.e., σ̄1, a conflict graph is
constructed with edges (t2, t3), (t2, t4), (t3, t5), (t4, t5). Sup-
pose that (t2, t3) and (t4, t5) is chosen to E for Lemma 4,
and t2, t5 has smaller minimum cost, say w(t2) = 3 and
w(t5) = 0. By removing (t2, t3) and (t4, t5), there is no edge
left in the conflict graph. We have LB(σ1, π

′) = LC(Nσ̄1
, π)

= w(t2) + w(t5) = 3 higher than the simple bound 0.

IV. APPROXIMATION

Although several advanced pruning techniques are pro-
posed, the exact algorithm is still too costly to meet the fast
repairing requirement, such as in online systems. As event
data are continuously generated, the online repairing may only
allow one pass through the events (transitions) in executions.

In this section, to support fast repairing, we introduce several
heuristics for approximation and present a one-pass algorithm.

The idea of approximate repairing is to repair one transition
at a time, and repeat until all violations are eliminated or no
repairing can be further conducted. As each step of repair-
ing a transition may introduce inconsistencies to others, we
heuristically choose a revision that will have least violations
to others. Let us first investigate this intuition on how to repair
one transition regarding violation elimination.

A. Heuristic for Repairing a Transition

Consider any transition tk ∈ Tσ in an execution (Nσ, π)
whose current labeling π(tk) is inconsistent with the specifi-
cation Ns, that is, having either π(preFσ (tk)) 6= preFs(π(tk))
or π(postFσ (tk)) 6= postFs(π(tk)). The repairing is to find a
new labeling π′(tk) that can eliminate the inconsistency to tk.
We consider possible candidates for repairing tk. Intuitively,
in order to reduce the repairing cost, we prefer the repairing
of tk with least inconsistencies introduced to other transitions.

Given any labeling π′, we define the number of violations
to a transition tk as follows. Recall that any place p in a
causal net always has |preF (p)| ≤ 1 and |postF (p)| ≤ 1. For
any pi ∈ preFσ (tk), we have either preF (pi) = ∅ (π′(pi) =
start) or preF (pi) = {ti}, a unique transition (prerequisite)
in the pre set of pi. We count place pi ∈ preFσ (tk) as one
violation to π′(tk) if π′(pi) 6∈ postFs(π

′(ti)). For the case of
preF (pi) = ∅, π′(pi) can only be mapped to start with no
violation introduced. By considering the symmetric violations
to the post set of tk, the total violation count introduced by
π′ on tk is given by τ(tk, π

′) =

|{pi ∈ preFσ (tk) | π′(pi) 6∈ postFs(π
′(ti)), π

′(pi) 6= start}|+
|{pj ∈ postFσ (tk) | π′(pj) 6∈ preFs(π

′(tj)), π
′(pj) 6= end}|.

Consequently, we need to find a π′ such that τ(tk, π
′) is

minimized. If τ(tk, π
′) = 0, the repair π′ is a perfect repairing

without introducing any new inconsistencies to others.

Fig. 6: Repairing one transition tk

Example 8 (Example 1 continued). Consider t2 in Figure 1
with π(t2) = do revise. For p1 ∈ preFσ (t2), we cannot find
any labeling π′(p1) such that π′(p1) ∈ preFs(π

′(t2)). Thereby,
p1 is counted as a violation towards π(t2). Similarly, p2 and
p4 are also counted having τ(t2, π) = 3. Suppose that t2 is
repaired by π′(t2) = design. We can assign π′(p1) = a which
belongs to preFs(π

′(t2)), i.e., p1 is no longer a violation. It
reduce the violation count of t2 to τ(t2, π) = 2.

B. One Pass Algorithm

We present an one pass algorithm of repairing one transition
at a time from start to end in the execution trace σ. In each
step, we determine the repair π′(tk) of a transition tk, k =
1, . . . , |σ|, and its corresponding π′(pj) of pj ∈ postFσ (tk).



Following the order of execution trace, we show that π′(pi)
of all places pi ∈ preFσ (tk) must have been determined.
According to Proposition 1, all the prerequisite transitions
of the current tk, say ti ∈ preFσ (preFσ (tk)), should have
been repaired. When previously repairing ti, the corresponding
pi ∈ postFσ (ti), having postFσ (pi) = {tk}, is assigned.

Initially, only one place is processed in the causal net, i.e.,
the start place. In each step of tk, as shown in Figure 6,
all the place pk−r, . . . , pk−1 in the pre set of tk are already
determined. After repairing the transition tk (if necessary),
we assign all the places pk+1, . . . , pk+s in the post set of
tk. Finally, the program terminates when it reaches the last
transition in the execution trace.

Algorithm 2 presents the pseudo-code of one pass repairing.
As illustrated in Line 1, we start from the first transition
t1 = σ(1) directly following the start place. In each iteration,
Line 5 selects a transition tk, i.e., the k-th transition σ(k)
in the execution trace σ. If there is no inconsistency with
respect to tk, we directly move to the next transition (Line 23);
otherwise, tk needs to be repaired (Lines 7-22). As discussed,
all the places in the pre set of tk must have been recovered
(initially, the start place in preFσ (t1) leaves unchanged).
Hence, the repairing is to determine two aspects: π′(tk) in
Line 11 and π′(postFσ (tk)) in Line 13. Possible candidates
for these two aspects will be discussed soon. τmin in Line 15
records the repairing π′ with the minimum τ(tk, π

′), i.e., the
minimum violations introduced by repairing tk.

Algorithm 2 ONEPASS(Nσ, π,Ns)
Input: An execution (Nσ, π) and a specification Ns
Output: A repair π′ such that (Nσ, π

′) � Ns
1: k:= 1, π′ := π
2: while (Nσ, π

′) 6� Ns do
3: if k > |Tσ| then
4: return unsound structure
5: tk := σ(k) the k-th transition in the execution trace
6: if π′(preFσ (tk)) 6= preFs(π(tk)) or π(postFσ (tk)) 6=

postFs(π(tk)) then
7: Tc := ∩pi∈preFσ (tk)postFs(π

′(pi))
8: τmin := a large positive integer d
9: for each x ∈ Tc do

10: if π′(preFσ (tk)) = preFs(x ) then
11: π′(tk) := x
12: for each complete labeling πp : postFσ (tk) →

postFs(x ) do
13: π′(postFσ (tk)) := πp(postFσ (tk))
14: if τ(tk, π

′) < τmin then
15: τmin := τ(tk, π

′)
16: πmin(tk) := π′(tk)
17: πmin(postFσ (tk)) := π′(postFσ (tk))
18: if τmin equals to the original value d then
19: return unsound structure
20: else
21: π′(tk) := πmin(tk)
22: π′(postFσ (tk)) := πmin(postFσ (tk))
23: k++
24: return π′

Correctness of conformance in the returned π′ is ensured by
the condition on pre set in Line 10 and the complete labeling

(defined below) for post set in Line 12 for each transition.

Candidates for Transition π′(tk): Since the places in
pi ∈ preFσ (tk) have already been determined, we can only
choose candidates for repairing tk without introducing any
inconsistency to pi. For π′(pi) of each pi ∈ preFσ (tk), we
can find a set of valid post transition, postFs(π

′(pi)), in
the specification Ns. A candidate x appearing as the valid
post transition of all π′(pi) can be a possible repairing of tk,
which will be consistent with all pi. Hence, the candidates for
repairing tk are given by Tc := ∩pi∈preFσ (tk)postFs(π

′(pi))
as illustrated in Line 7 in Algorithm 2.

Candidates for Places π′(postFσ (tk)): Next, given a can-
didate x ∈ Tc for π′(tk), we aim to determine the assignment
of places pj ∈ postFσ (tk) such that τ(tk, π

′) is minimized.
Again, the assignment of pj should be inconsistent with tk.
For a fixed π′(tk) = x , it is equivalent to find a labeling
from postFσ (tk) to postFs(x ), denoted by πp. We say a
labeling πp : postFσ (tk) → postFs(x ) is complete, if
πp(postFσ (tk)) = postFs(x ). This complete labeling πp, as
a candidate labeling of π′, ensures the consistency on tk, i.e.,
π′(postFσ (tk)) = postFs(π

′(tk)).
All the possible complete labeling πp can be enumerated by

considering the combination of postFs(x ) with repetition. Let
b and d be the maximum sizes of the pre/post set of any node
in the specification and execution, respectively. Each pi in
postFσ (tk) has b choices of π′(pi) for repairing. Considering
all d places, the total number of possible labelings πp is
bounded by O(bd).

Example 9 (Example 1 continued). Consider the first tran-
sition t1 in Figure 1. Its name submit is already consistent
with p0 : start in preFσ (t1). For t2, we can find a repairing
π′(t2) = design, and find a complete labeling πp, e.g.,
πp(p2) = b and πp(p4) = d, for p2, p4 ∈ postFσ (t2) such
that the violation count on t2 is minimized. Similarly, for the
next t3, we can find a repairing, say π′(t3) = insulation proof
for example, and its corresponding π′(p3) = c in the post
set, following the minimum violation count heuristic. Re-
pairing carries on by one pass through the execution trace,
and yields π′(t4) = check inventory, π′(p5) = e, π′(t5) =
evaluate, π′(p6) = s.

Algorithm Analysis: As each place pi ∈ preFσ (tk) can
suggest |postFs(π

′(pi))| (at most b) repairs for tk, the total
number of candidates in Tc is bounded by b. Considering
all the O(bd) possible labelings, we have cost O(bd+1) for
repairing one transition. The while iteration repeats at most n
times, n = |Tσ| the number of transitions in the execution.
Hence, the complexity of Algorithm 2 is O(bd+1n).

We select one of the alternatives for repairing a transition
in the one pass algorithm, which is heuristically good but
might not be optimal. The repairing results could be possibly
bad, i.e., significantly differ from the original one compared
to the optimal solution, as each transition may lead to a
completely different flow in execution. Nevertheless, the one
pass solution offers an alternative of trading time efficiency



TABLE I: Execution trace quality statistics

Traces # % % inconsistencies

consistent 665 14.08
inconsistent (event name repairable) 3665 77.62 94.58
inconsistent (unsound structure) 210 4.45 5.42
irrelevant 182 3.85

from repairing cost. As shown in the experiments, the one pass
algorithm needs extremely low time cost while the observed
approximation ratio is still considerable.

V. EXPERIMENTS

In this section, we first report a survey on the quality of a
real event data set. Then, the performance of proposed repair-
ing methods is evaluated on both effectiveness and efficiency.
All programs are implemented in Java, and experiments run
on a computer with 2.67GHz CPU and 8GB memory.

A. Survey on Quality of Real Data

We employ a real data set collected from a bus manufac-
turer. The event data are extracted from processes related to
the bus design and customization affairs. The specification
considered in the experiments consists of 22 transitions and
24 places with the maximum size of pre/post set 3 (the
maximum parallel flows). There are 4,722 traces collected
during the execution of the process. Most of the traces are
small in size, in the range of 6 to 20. The maximum size
observed in all the traces is no greater than 75. According
to our observation, the maximum size of pre/post set in the
execution is 3 as well.

In order to evaluate the quality of the collected execution
traces, we observe the percentage of traces with inconsis-
tencies. According to the statistics reported in Table I, only
14.08% of traces are consistent, i.e., exactly conform to the
specification, while most traces are inconsistent, either incon-
sistent labelling or unsound structure. In particular, 3.85% of
execution traces are irrelevant to the specification, i.e., with
all the event names not from the specification.

Among 4,050 execution traces with inconsistencies
(82.07%), we apply our exact repairing method. According
to the results, there are 3,665 traces (77.62%) that can be
repaired, while the remaining 210 traces (4.45%) are iden-
tified with unsound structure. That is, there does not exist
any labeling π w.r.t. the observed causal net structure that
would conform to the specification. In the following, we
focus on illustrating the performance of the proposed repairing
approaches, in terms of both effectiveness and efficiency.

B. Repairing Performance Evaluation

In order to study the accuracy of repairing inconsistent
labelling by proposed methods, we employ 665 traces in the
dataset that are correct (conforming to the specification). We
randomly change event names in the traces as faults, e.g., for
fault size 3, we randomly alter 3 event names in each trace (if
the trace size is less than the fault size, we alter all the event
names). The repairing methods are then applied to modify

the execution traces to eliminate violations. We study the
accuracy of the repairing results via comparison with the truth
of faulty data previously replaced. For each trace, we conduct
the random insertion of faults 1000 times and compute the
average accuracy. Meanwhile, the repairing time performance
is also reported, including the repairing over the remaining
4,050 execution traces with inconsistencies in real data.
Criteria: Let truth be the set of original correct events
(t, πo(t)) that are randomly replaced in an execution trace. Let
found be the set of (t, π′(t)) that are repaired in π′, i.e., the re-
pairing results. To evaluate the accuracy, we use the f-measure
of precision and recall [31], given by precision = |truth∩found|

|found| ,

recall = |truth∩found|
|truth| , and f-measure= 2 · precision·recallprecision+recall . It is

natural that a higher f-measure is preferred.
Recall that the one pass method returns an approximate

repairing with cost ∆(π, π′), while the exact approaches
compute the optimal solutions with repairing cost ∆(π, π∗),
denoted by ∆∗. To study the difference between optimal
and approximate solutions, we report the relative performance
(∆/∆∗). The closer the relative ratio to 1, the better is the
approximation performance.

Besides the effectiveness evaluation, we also observe the
time cost of the repairing approaches to study the efficiency
performance. In particular, we have two bounding functions
and a pruning technique for the exact algorithms, both of
which can reduce possible repairing branches. To study the
pruning power, we observe the total number of elements that
have ever been put in Q , i.e., elements (nodes) in the branching
graph in Figure 4. The less the processed elements in the
branches, the higher is the pruning power.

C. Comparison with Existing Methods
This experiment compares our proposed Exact algorithm

(Exact) and approximate One Pass algorithm (OP) with the
state-of-the-art techniques Graph Relabel [27] (Graph) and
trace Alignment [11] (Alignment). The comparison is per-
formed on various sizes of inserted faults in Figure 7 and
various trace sizes in Figure 8.

As illustrated in Figure 7(c), the accuracies of both the Exact
and OP are considerable, with f-measure no less than 0.8.
Remarkably, the Exact approach have f-measures as high as
0.9. The accuracy performance of the OP method is not as
stable as the exact ones. The rationale is that OP determines
a heuristically good assignment as the repair of a transition
without trying other alternatives like the exact algorithm.
Consequently, by choosing a wrong assignment in a step, the
repairing may vary in the following steps.

Accuracy of Alignment and Graph drops quickly on large
fault sizes. The reason is that Alignment without exploiting
structural information always chooses wrong XOR choices.
Graph is originally designed for repairing simple graphs,
which do not consider AND and XOR semantics. As shown
in Figure 8(a), our Exact and OP keep high accuracies when
the size of trace grows up, with f-measure no less than 0.8.

Figures 7(d) and 8(b) report the efficiency evaluation. It is
not surprising that the repairing time cost of Exact increases
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Fig. 7: Effectiveness and efficiency of repairing various faults
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Fig. 8: Effectiveness and efficiency on various trace sizes

with the increase of inserted faults in Figure 7(d). According to
our analysis, the Exact algorithm has exponential complexity
in the number of events (transitions). Therefore, its time costs
increase heavily with the increase of trace sizes in Figure 8(b).
Nevertheless, OP algorithm shows significantly lower time
costs (comparable to Alignment, but with higher accuracy than
Alignment, especially in large fault sizes and trace sizes).

D. A Closer Look at Proposed Techniques

We compare our proposed repairing techniques in Figures
9-11, including the Exact algorithm with the Simple bounding
function (ES), the Exact algorithm with the Advanced bound-
ing function (EA), the Pruning of Invalid branches for the exact
algorithm (PI), and the One Pass algorithm (OP).

In Figure 9(a), we demonstrate that the advanced bounding
function (EA) can reduce the repairing time significantly
compared with the simple one (ES). In order to illustrate the
pruning power of different bounding functions, in Figure 9(b),
we show that EA needs less elements of repairing states to be
processed (i.e., the total number of nodes in Figure 4). The
effectiveness of pruning on invalid branches is limited, since
the traces with sound structure in this experiment have lower
chance to involve invalid branches.

Similarly, as illustrated in Figure 10(a), EA method with
the advanced bounding function can reduce time cost consid-
erably, compared with ES. Again, OnePass algorithm keeps a
significantly lower time cost. Indeed, the time cost in Figure
10(a) is proportional to the size of processed elements of
branching states in Figure 10(b). The processed elements as
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well as the pruning power may not increase strictly with the
trace size, owing to the structural difference in the process.
Referring to the property of bounding functions, the pruning
power of the advanced pruning bound is at least no worse than
that of the simple one, which is also observed in Figure 10(b).

Figure 11 presents the relative performance ∆/∆∗ of the
approximate result ∆ by OP and the optimal solution ∆∗

by the Exact algorithm. As illustrated, the approximate result
is very close to the optimal one, with relative difference no
greater than 1.4. With the increase of inserted faults, both
the optimal and approximate solutions have to repair most
transitions. Hence, their repairing cost difference becomes
small and the relative ratio ∆/∆∗ decreases close to 1.

E. Scalability

We also report the repairing time performance over the 4050
execution traces with inconsistencies. In Figure 12(a), each
point denotes the size of a trace v.s. its repairing time cost. As
illustrated, the EA approach with advanced bounding function
can significantly reduce time costs, especially when the trace
size is large. Similar to the aforesaid results, the repairing
time cost is closely related to the corresponding processed
elements of branching states, as shown in Figure 12(b). It is
notable that the pruning method of invalid branches does not
show significant improvement. The reason is that our currently
employed real data set has a small portion of unsound structure
traces, i.e., only 4.45% as shown in Table I. The opportunity
of pruning on invalid branches is thus limited during repairing.



Fig. 12: Scalability on all the traces in real data
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Fig. 13: Scalability on synthetic data

In order to evaluate the scalability of the proposed methods,
Figure 13 reports the experiment on lager synthetic data. The
synthetic event data are generated following the method in
[28] by using the commonly used workflow patterns, such as
parallel, sequential, and so on. Note that we can find a valid
repair for most execution traces in the previous real data. In
order to study the performance of unsound structure cases, the
synthetic data contains 20% traces that do not exist any valid
labeling. As illustrated in the results, the advanced bounding
function (EA) can always show better pruning power and needs
only half of the time cost of ES. Remarkably, the pruning
method performs well together with both ES and EA, since it
can prune the invalid branches especially in those traces that
contain unsound structures. Again, the one pass algorithm can
always keep significantly lower time cost.

F. Experiments on OA Dataset

We employ another real data set collected from the OA
systems (implemented by Lotus Notes) of two subsidiaries
in a telecom company. The specification considered in the
experiment consists of 32 transitions and 31 places with the
maximum size of pre/post set 3 (maximum parallel flows).

As illustrated in Figure 14(c), both the Exact and OP still
achieve very high accuracies with f-measures no less than
0.95. In contrast, the f-measure of Alignment falls heavily
compared with its performance in Figure 7(c). The rationale
is that the dataset collected from the OA systems contains
more AND splits and AND joins in specification which prevent
Alignment from determining the truth execution paths. Similar
with Figure 7, the accuracy of Alignment and Graph drops
quickly on large fault sizes here. Figures 14(d) report the
efficiency evaluation. The time cost of Exact still increases
with the increase of inserted faults in Figure 14(d), and OP
algorithm shows significantly lower time costs.

VI. RELATED WORK

The cooperation of business processes and data management
has been emphasized for various workflow networks involving
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Fig. 14: Effectiveness and efficiency of repairing various faults

both data and flow, e.g., in Web applications, e-governance,
and electronic patient records [15]. In particular, workflow
techniques are useful for data management tasks such as data
lineage and data provenance [5], [28]. Instead of repairing in-
consistencies, the existing study assumes event data to be clean
and is dedicated to improving the execution performance, i.e.,
optimize/accelerate the execution [22]. As described, repairing
event data is indeed highly demanded and non-trivial.

Process Data Management: Studies on process data con-
ducted by the data management community mainly focus on
processing queries over workflow executions [4], [12], [13],
[16]. A typical query inputs a process specification and a
pattern of execution, and tries to identify all the executions
that have the structure specified by the pattern. Additional
conditions may be added in the query, such as type information
[12] or probability [14]. Moreover, as an important application,
provenance queries on workflows are well investigated [23],
[1], [2], [3]. A typical provenance query calculates the transi-
tive closure of dependencies of an event in the process data.
In particular, Bao et al. [1] studied the difference provenance,
i.e., computing the structural difference of two executions.
Note that the repairing studied in this work employs the
modification of names in events (transitions) without changing
the structure. Our approaches either identify the executions
with unsound structures or repair them for conformance. As
the prerequisite of execution is not changed in repairing, the
repairing cost is directly computed by modification count.

Database Repairing: Data dependencies or integrity con-
straints are often employed to eliminate inconsistencies in
databases [19]. Most previous works consider equality con-
straints such as inclusion dependencies, functional dependen-
cies or conditional functional dependencies [6]. The repairing
aims to modify a minimum set of tuple values in order
to make the revised data satisfy the given constraints [33],
[7]. Although we adopt the same modification repairing, the
constraints are very different between data dependencies and
process specifications. In particular, the equality based data
dependencies specifies groups of tuples with equal values,



which do not exist among transitions in event data. Approaches
are also proposed that do not follow the minimality, such as fix
with master data and edit rules [21], partial currency orders
[20], or accuracy rules [8], etc. To cooperate with these art
techniques, extra information is often needed such as master
data or additional rules.

VII. CONCLUSIONS

To the best of our knowledge, this is the first study on con-
sidering structural information for cleaning event data. Rather
than simply repairing event names in an unstructured sequence
of events, the structure-based cleaning concerns inconsisten-
cies in both structure and labeling (names) of events. While
unsound structure is usually not for automatically repairing
(which needs business actors to manually handle), it is highly
desirable to repair inconsistent event names (as also performed
by the existing sequence-based cleaning).

In this paper, we study the problems of efficiently detecting
unsound structure and repairing inconsistent event names.
Firstly, to repair event data with inconsistent labeling but
sound structure, we follow the widely used minimum change
principle to preserve the original information as much as
possible. Then, we devise a novel, practically efficient exact
algorithm to conduct detection and repairing dirty event data
simultaneously so that it either 1) reports unsound structure
or 2) gives the minimum repair of inconsistent event names.
Moreover, we also present a PTIME one-pass algorithm to
approximately deliver the results. Effective bounding functions
and pruning techniques are carefully designed to achieve high
repairing performance.

Experiments on both real and synthetic data demonstrate the
effectiveness and efficiency of proposed methods. In particular,
the repair accuracy of our proposal is significantly higher
than the existing sequence-based repair [11] and the direct
application of graph repair [27]. According to the survey
on real datasets, among the execution traces with detectable
inconsistencies (82.07%), most are structurally sound with
repairable event names (77.62%). After detecting unsound
structures by this proposal, an interesting future study is to
automatically suggest possible structural explanations during
the manual consultation by business owners.
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